By Dr. Robert Zubrin, Mars Society President, Scientific American, 03.25.21
The triumphant landing of the Perseverance rover has inspired all Americans, and indeed much of the world. President Biden should follow it up by launching a program to send humans to Mars.
While robotic rovers are wonderful, they cannot resolve the fundamental scientific question that Mars poses to humanity, which relate to the potential prevalence and diversity of life in the universe. The early Mars was very much like the early Earth; a rocky, warm and wet planet with a carbon dioxide–dominated atmosphere. Life appeared on Earth virtually as soon as our planet was cool enough for liquid water. Did it appear on Mars too? If so, did it use the same DNA-RNA information system underlying all life on Earth, or something else? We now know that billions of stars have planets. Is life likely to found everywhere? Is life as we know it on Earth what life is, or is it just a particular example drawn for a vast tapestry of possibilities?
These are questions that thinking men and women have wondered about for thousands of years. They can only be resolved by sending humans.
Finding evidence of past life requires fossil hunting. Perseverance will make a stab at that, but human rock hounds, capable of traveling far over difficult terrain, climbing, digging, doing delicate work and intuitively following up clues, can do that job vastly better. Finding extant life to determine its nature will require drilling down hundreds of meters to reach underground water where life might still thrive, bringing up samples, culturing them and subjecting them to analysis. That is light-years beyond the ability of robotic rovers.
If we don’t go, we won’t know.
Some say that sending humans to Mars is a task for the far future, far beyond our abilities. In fact, the means to do such a mission are close at hand.
Sending humans to Mars does not require building gigantic nuclear-powered ion-drive science-fiction spaceships in a futuristic world of orbital spaceports. It requires sending a payload of 10 tons or more capable of supporting a small group of people from Earth to Mars, landing it and then sending that or a comparable payload back.
The currently operational SpaceX Falcon Heavy could throw a 10-ton class lander to Mars. The soon to be operational NASA SLS and SpaceX Starship booster will be able to send a 20-ton lander. So, we have that part covered. The next thing we need is the lander.
The Perseverance landing system can deliver one ton to the surface of Mars. To get started with human exploration, we need a 10-ton class lander. There are a number of ways to create such a system. For example, we could use aeroshells, parachutes and landing jets, or perhaps a miniature version of Starship. I won’t go into the details. But the bottom line is if we can land one ton on Mars, we can land 10. It requires no scientific breakthroughs, just engineering.
Once we have a 10-ton lander, we can use it send large robotic expeditions to Mars. Instead of landing one rover, we land a platoon of robots. These could include science explorers like Perseverance, and much bigger versions of the Ingenuity helicopter capable of broad-ranging reconnaissance. A team of smaller rovers armed with high resolution cameras could create a high-definition map of the area and transmit it to Earth, allowing millions of people here to walk the landscape with virtual-reality gear, directly assisting the robots in exploration by calling their attention to features of interest.
But the expedition would also include construction robots, possibly humanoid in form with arms and legs, capable of building a Mars base. These would set up a power system and put in operation units for converting Martian carbon dioxide and water ice into methane and oxygen rocket propellant, which would be stored in tanks. With such a base set up and fully equipped with housing, power, a lab, a workshop and supplies in advance, all astronauts will need to do is show up with a credit card, and check in. Everything they need to live and work on Mars, and return from Mars, will be there waiting for them.
The is nothing in this plan that is beyond our capability, either technically or financially. Joe Biden could take the key step that would allow America to once again to astonish with world with what free people can do. The COVID-19 pandemic has shown the importance of science to our lives. Science comes from scientists, who come from children who want to become scientists. Youth loves adventure. As during the Apollo days, a bold space program would make science the great adventure, inspiring millions of young people to want to become scientists, engineers, inventors, medical researchers and technological entrepreneurs—the ultimate resource we will need to meet whatever challenges the future may bring.
Seize the moment, Joe.